Core Mathematics C1 Paper D

1. Solve the equation

$$
x^{2}-4 x-8=0
$$

giving your answers in the form $a+b \sqrt{3}$ where a and b are integers.
2. The curve C has the equation

$$
y=x^{2}+a x+b,
$$

where a and b are constants.

Given that the minimum point of C has coordinates $(-2,5)$, find the values of a and b.
3. (i) Solve the simultaneous equations

$$
\begin{align*}
& y=x^{2}-6 x+7 \\
& y=2 x-9 \tag{4}
\end{align*}
$$

(ii) Hence, describe the geometrical relationship between the curve $y=x^{2}-6 x+7$ and the straight line $y=2 x-9$.
4. (i) Evaluate

$$
\begin{equation*}
\left(36^{\frac{1}{2}}+16^{\frac{1}{4}}\right)^{\frac{1}{3}} . \tag{3}
\end{equation*}
$$

(ii) Solve the equation

$$
\begin{equation*}
3 x^{-\frac{1}{2}}-4=0 . \tag{3}
\end{equation*}
$$

5. (i) Sketch on the same diagram the curve with equation $y=(x-2)^{2}$ and the straight line with equation $y=2 x-1$.

Label on your sketch the coordinates of any points where each graph meets the coordinate axes.
(ii) Find the set of values of x for which

$$
\begin{equation*}
(x-2)^{2}>2 x-1 \tag{3}
\end{equation*}
$$

6. (i) Given that $y=x^{\frac{1}{3}}$, show that the equation

$$
2 x^{\frac{1}{3}}+3 x^{-\frac{1}{3}}=7
$$

can be rewritten as

$$
\begin{equation*}
2 y^{2}-7 y+3=0 \tag{3}
\end{equation*}
$$

(ii) Hence, solve the equation

$$
\begin{equation*}
2 x^{\frac{1}{3}}+3 x^{-\frac{1}{3}}=7 \tag{4}
\end{equation*}
$$

7. Given that

$$
y=\sqrt{x}-\frac{4}{\sqrt{x}}
$$

(i) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(ii) find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$,
(iii) show that

$$
\begin{equation*}
4 x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y=0 \tag{3}
\end{equation*}
$$

8.

$$
\begin{equation*}
\mathrm{f}(x)=2+6 x^{2}-x^{3} \tag{4}
\end{equation*}
$$

(i) Find the coordinates of the stationary points of the curve $y=\mathrm{f}(x)$.
(ii) Determine whether each stationary point is a maximum or minimum point.
(iii) Sketch the curve $y=\mathrm{f}(x)$.
(iv) State the set of values of k for which the equation $\mathrm{f}(x)=k$ has three solutions.
9. The points P and Q have coordinates $(7,4)$ and $(9,7)$ respectively.
(i) Find an equation for the straight line l which passes through P and Q. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The straight line m has gradient 8 and passes through the origin, O.
(ii) Write down an equation for m.

The lines l and m intersect at the point R.
(iii) Show that $O P=O R$.
10.

The diagram shows the circle C and the straight line l.
The centre of C lies on the x-axis and l intersects C at the points $A(2,4)$ and $B(8,-8)$.
(i) Find the gradient of l.
(ii) Find the coordinates of the mid-point of $A B$.
(iii) Find the coordinates of the centre of C.
(iv) Show that C has the equation

$$
\begin{equation*}
x^{2}+y^{2}-18 x+16=0 \tag{3}
\end{equation*}
$$

